
Characterizing Sample Distribution Properties
and their Impact on Experimental Design

MS17
SIAM UQ14

Monday 31 March 2014
4:30 – 6:30 pm

Ballroom A – 2nd Floor

Organizers Scott A. Mitchell and Mohamed S. Ebeida

4:30-4:55 Fourier Analysis of Stochastic Samnpling Strategies for
 Assessing Bias and Variance in Integration.

 Kartic Subr, Disney Research UK
5:00-5:25 POF-Darts: Geometric Adaptive Sampling for

 Probability of Failure
 Mohamed S. Ebeida, Sandia National Laboratories

5:30-5:55 Exploring High Dimensional Spaces with
 Hyperplane Sampling
 Scott A. Mitchell, Sandia National Laboratories

6:00-6:30 Building Surrogate Modesl with
 Quantifiable Accuracy
 Hany S. Abdel-Khalic and Congjian Wang, NC State

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy’s National Nuclear Security Administration  

 under contract DE-AC04-94AL85000."

SIAM UQ14, MS17, talk 3

30 March 2014, 5:30-5:55pm

Speaker: Scott A. Mitchell

Exploring High Dimensional Spaces  
with Hyperplane Sampling"

k-d Darts: Sampling by k-Dimensional Flat Searches
MOHAMED S. EBEIDA
Sandia National Laboratories
ANJUL PATNEY
University of California, Davis
SCOTT A. MITCHELL and KEITH R. DALBEY
Sandia National Laboratories
ANDREW A. DAVIDSON and JOHN D. OWENS
University of California, Davis

We formalize sampling a function using k-d darts. A k-d dart is a set
of independent, mutually orthogonal, k-dimensional hyperplanes called
k-d flats. A dart has d choose k flats, aligned with the coordinate axes for ef-
ficiency. We show k-d darts are useful for exploring a function’s properties,
such as estimating its integral, or finding an exemplar above a threshold.
We describe a recipe for converting some algorithms from point sampling
to k-d dart sampling, if the function can be evaluated along a k-d flat.

We demonstrate that k-d darts are more efficient than point-wise samples
in high dimensions, depending on the characteristics of the domain: e.g. the
subregion of interest has small volume and evaluating the function along a
flat is not too expensive. We present three concrete applications using line
darts (1-d darts): relaxed maximal Poisson-disk sampling, high-quality ras-
terization of depth-of-field blur, and estimation of the probability of failure
from a response surface for uncertainty quantification. Line darts achieve
the same output fidelity as point sampling in less time. For Poisson-disk
sampling, we use less memory, enabling the generation of larger point dis-
tributions in higher dimensions. Higher-dimensional darts provide greater
accuracy for a particular volume estimation problem.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

General Terms: Sampling, Dimension

Additional Key Words and Phrases: Line search, thin regions, rendering,
depth of field, Poisson-disk sampling, Monte Carlo integration, Latin hy-
percube sampling, uncertainty quantification

ACM Reference Format:

Ebeida, M. S., Patney, A., Mitchell, S. A., Dalbey, K. R., Davidson, A.
A., and Owens, J. D. 2013. k-d Darts: Sampling by k-Dimensional Flat
Searches. ACM Trans. Graph. TOG-12-0088, 17 pages.

Mohamed S. Ebeida: msebeid@sandia.gov
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c� YYYY ACM 0730-0301/YYYY/13-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

99 Point Darts 6 Line Darts 1 Plane Dart

Fig. 1. Sampling long and thin subregions (gray) using points (left), lines
(center), and planes (right). Point samples may be cheap to generate and
evaluate, but they contribute nothing to the final result if they miss the re-
gion of interest. Misses (blue) are frequent for regions with a small volume.
Samples of higher dimensions, or k-d darts, often intersect (red) the region
of interest, especially if the region is long and thin. A k-d dart’s greater
expense is offset by it providing more information.

1. INTRODUCTION
In many applications we are interested in estimating some global
property of a function because it is difficult to calculate that prop-
erty exactly. Sampling is the process of randomly selecting sam-
ples, subsets of a domain. The function is evaluated at these subsets,
and the global property is estimated based on those values.

In typical sampling processes, the samples are points. However,
a recurring challenge is to deal efficiently with the case that the in-
teresting part of the domain is very small compared to the entire do-
main. For example, suppose we have a function over a domain, and
we are interested in estimating the volume of the subdomain where
the function is negative. If this subdomain has a very small vol-
ume, only a correspondingly very small fraction of uniform sample
points will land in it; see Figure 1. Consequently, point sampling
will require a large number of samples to get any estimate, and will
be inefficient since most samples will not contribute to the estimate.

We propose the k-d dart to address this problem. One key idea is
that rather than evaluate the function at one single point at a time,
we evaluate it with a higher-dimensional sample. Specifically, we
evaluate the function along a set of higher-dimensional flats (i.e.
lines, planes . . . hyperplanes). The second key idea is to use a set
of mutually orthogonal flats, aligned with the coordinate axes; a
k-d dart denotes this set of flats. Randomly oriented flats have been
considered before, but orthogonal flats are more efficient in many
settings. Moreover, if our subregion of interest is long and thin,
there is a better chance that a good fraction of our flats will hit it
compared to randomly oriented flats. Each fixed-coordinate value
of each flat is chosen independently. This helps ensure that darts
are unbiased, meaning that the expected mean estimate is equal to

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Appeared in journal	

ACM Transactions on Graphics	

January 2014	

3

k-d Darts: Sampling by k-Dimensional Flat Searches

MOHAMED S. EBEIDA
Sandia National Laboratories
ANJUL PATNEY
University of California, Davis
SCOTT A. MITCHELL and KEITH R. DALBEY
Sandia National Laboratories
and
ANDREW A. DAVIDSON and JOHN D. OWENS
University of California, Davis

We formalize sampling a function using k-d darts. A k-d dart is a set of inde-
pendent, mutually orthogonal, k-dimensional hyperplanes called k-d flats.
A dart has d choose k flats, aligned with the coordinate axes for efficiency.
We show k-d darts are useful for exploring a function’s properties, such
as estimating its integral, or finding an exemplar above a threshold. We
describe a recipe for converting some algorithms from point sampling to
k-d dart sampling, if the function can be evaluated along a k-d flat.

We demonstrate that k-d darts are more efficient than point-wise sam-
ples in high dimensions, depending on the characteristics of the domain:

M. S. Ebeida, S. A. Mitchell, and K. R. Dalbey thank Sandia’s Validation
and Verification program, and Computer Science Research Institute for
supporting this work. A. Patney, A. A. Davidson, and J. D. Owens thank
the National Science Foundation (grant no. CCF-1017399), Sandia LDRD
award no. 13-0144, UC Lab Fees Research Program award no. 12-LR-
238449, NVIDIA and Intel Graduate Fellowships, and the Intel Science
and Technology Center for Visual Computing for supporting this work.
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.
Authors’ addresses: M. S. Ebeida, Sandia National Laboratories, 1515
Eubank, Albuquerque, NM 87123; A. Patney, University of California,
Davis, 1 Shields Ave, Davis, CA 95616; S. A. Mitchell (corresponding
author) and K. R. Dalbey, Sandia National Laboratories, 1515 Eubank, Albu-
querque, NM 87123; email: samitch@sandia.gov; A. A. Davidson and J. D.
Owens, University of California, Davis, 1 Shields Ave, Davis, CA 95616.
c©2014 Association for Computing Machinery. ACM acknowledges that

this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2014 ACM 0730-0301/2014/01-ART3 $15.00

DOI: http://dx.doi.org/10.1145/2522528

for example, the subregion of interest has small volume and evaluating
the function along a flat is not too expensive. We present three concrete
applications using line darts (1-d darts): relaxed maximal Poisson-disk sam-
pling, high-quality rasterization of depth-of-field blur, and estimation of the
probability of failure from a response surface for uncertainty quantification.
Line darts achieve the same output fidelity as point sampling in less time.
For Poisson-disk sampling, we use less memory, enabling the generation
of larger point distributions in higher dimensions. Higher-dimensional darts
provide greater accuracy for a particular volume estimation problem.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Sampling, dimension, line search, thin
regions, rendering, depth-of-field, Poisson-disk sampling, Monte Carlo in-
tegration, Latin hypercube sampling, uncertainty quantification

ACM Reference Format:
Mohamed S. Ebeida, Anjul Patney, Scott A. Mitchell, Keith R. Dalbey,
Andrew A. Davidson, and John D. Owens. 2014. k-d darts: sampling by
k-dimensional flat searches. ACM Trans. Graph. 33, 1, Article 3 (January
2014), 16 pages.
DOI: http://dx.doi.org/10.1145/2522528

1. INTRODUCTION

In many applications we are interested in estimating some global
property of a function because it is difficult to calculate that property
exactly. Sampling is the process of randomly selecting samples,
subsets of a domain. The function is evaluated at these subsets, and
the global property is estimated based on those values.

In typical sampling processes, the samples are points. However,
a recurring challenge is to deal efficiently with the case that the
interesting part of the domain is very small compared to the entire
domain. For example, suppose we have a function over a domain,
and we are interested in estimating the volume of the subdomain
where the function is negative. If this subdomain has a very small
volume, only a correspondingly very small fraction of uniform sam-
ple points will land in it; see Figure 1. Consequently, point sampling
will require a large number of samples to get any estimate, and will
be inefficient since most samples will not contribute to the estimate.

We propose the k-d dart to address this problem. One key idea is
that rather than evaluate the function at one single point at a time,
we evaluate it with a higher-dimensional sample. Specifically, we

ACM Transactions on Graphics, Vol. 33, No. 1, Article 3, Publication date: January 2014.

Major Points of Presentation
•  Connection to techniques, and applications, from fields besides UQ
•  Concepts

–  Hyperplane sampling
•  motivation, capture small thin regions

–  Formula for changing point sampling to flat sampling
–  Unbiased – provable
–  Variance – experiments, efficiency

•  hyperplane intersection with the object needs to be computable, efficient
•  volume estimation experiments

–  efficiency
–  dart type

–  Framework
•  function averaging, integration
•  finding a point with a function value (e.g. outside disks)

–  Three applications
•  Volume estimation

–  function integration
•  Generate a well-spaced point sampling a.k.a. Relaxed MPS

–  find domain points with function values

•  Depth of field with antialiasing
–  function integration

Motivation

Recall Problem Motivation
POF-Darts prior talk

• Reliability calculations
–  Identify and measure tiny failure

subspaces in a vast parametric space
•  10+ dimensions (parameters)
•  <10-6 PoF (small volume region)
•  Expensive simulations – faster surrogate

–  POF-Darts was adaptive sampling
(to find small regions with particular properties)

–  This talk is mainly about uniform sampling of regions
(to measure them)

• Approach
–  Other sampling methods based on statistics and analysis
–  We borrow Computational Geometry, Graphics concepts:

•  line searches
•  sample-neighborhoods, geometric balls
•  functional integration

public domain clip art	

Clker.com	

point sampling	

Intuition
Who’s going to hit the target (orange)?

line sampling	

coin-shaped target	

same volume, more surface	

line sampling	

More precisely
d=20, PoF = 10-6 (uniform distributions throughout talk)

16 parameters don’t matter
 4 parameters matter

(½)5	

1
2()

5!
"
#

$
%
&
4

=1/ 220 ≈10−6

domain	

failure	
1/2	

1/ 220 ≈10−6

all parameters equal

–  Lines are more likely to hit than points
•  better if coin-like (bigger surface area)

•  better if tilted (surface area subtended by each line)

–  Intersection length is more information than binary point inside/outside
•  Planes are even better, hyperplanes...

1 in 106 points	

7 in 106 axis lines 	

hit failure region	

1 in 106 points	

2 in 106 axis lines 	

hit failure region	

ditto and tilted

1 in 106 points	

30 in 106 axis lines 	

hit failure region	

Hyperplane sampling to hit regions

99 points	
 6 line darts	
 1 plane dart	

Lines, hyperplanes, are more likely to intersect these regions, 	

 and they give more information	

But they are more expensive.	

Is it worth it?	

The point of our paper is to answer “yes.”	

Approach, definitions

k-d Dart
•  k-dimensional hyperplanes (flats)

k free coordinates
d-k fixed coordinates

•  dart = (d choose k) flats, one for every possible axis-aligned
orientation
–  free coordinates (orientations) deterministically uniform
–  fixed coordinates (positions) uniform random,

identically and independently distributed

one 1-d dart in a 2-d domain	

= two 1-d lines: x-aligned, y-aligned	

k-d darts are unbiased

• I.e. the mean estimate is the true mean
• Because each flat is unbiased

–  because uniform point sampling of a height function is unbiased

3:6 • M. S. Ebeida et al.

(2) Retain the portions of g where the function value is acceptable,
f > 0. (For MPS, these are the subsegments outside all prior
disks.)

(3) Return a random point from g.

The likelihood of generating a particular g after several iterations
of this process is usually different than its likelihood from uniform
point sampling; Section 4.1.2 discusses this in more detail.

3.3 Darts are Unbiased for Averaging a Function

We prove that the algorithm in Section 3.1.1 is “unbiased,” meaning
the expected mean estimate using darts is equal to the true mean.
Actually we show something stronger: the expected value of a sin-
gle, uniformly sampled, axis-aligned flat is equal to the true mean.
The expected value of sampling by darts is the mean of the expected
value of all the flats; so, by the stronger result, this is the mean of a
set of expected values that are themselves the true mean.

The stronger result follows immediately from point sampling
being unbiased and the order independence of multidimensional
integration. Let D be the set of domain coordinates, and partition
it into the set of fixed and free coordinates for a flat: D = Dfree ∪
Dfixed. Convert f from a function over a d-dimensional domain
to fDfixed over the fixed coordinates by integrating over the free
coordinates: fDfixed =

∫
Dfree f .

By definition of the true mean u of f , we have

u

∫

D
1 =

∫

D
f =

∫

Dfixed

∫

Dfree
f =

∫

Dfixed
fDfixed.

Since a uniform point sample s is unbiased, E(f (s)) = u. Let
uDfixed be the true mean of fDfixed. Since picking a particular flat is
done by uniform point sampling over Dfixed, we have

E(fDfixed(sDfixed)) = uDfixed =
∫
Dfixed fDfixed∫

Dfixed 1
.

Combining these two we have

E(fDfixed(sDfixed))
∫

Dfixed
1 = u

∫

D
1.

Since the domain is a box,
∫

D
1 =

∫

Dfixed

∫

Dfree
1 =

(∫

Dfixed
1
) (∫

Dfree
1
)

=
(∫

Dfixed
1
)

V (flat).

That is, simply divide the integral of f over a flat by the flat’s
relative volume to get an unbiased estimate:

E(fDfixed(sDfixed))
V (flat)

= u.

We reemphasize that this shows that a single axis-aligned flat is
an unbiased estimator when chosen uniformly from a box. We did
not rely on the dimensionality of the flat, cycling deterministically
over the set of fixed dimensions, nor flats being orthogonal; these
may affect the variance but not the mean estimate.

Except for the uniform sampling over the fixed coordinates and
the volume of a flat being constant, we did not rely on the domain
being a box nor the flats being axis aligned. For comparison we
perform unbiased sampling with unaligned flats in Section 5.

4. APPLYING THE FRAMEWORK

We now describe how to apply the k-d dart framework to our rep-
resentative applications in more detail.

4.1 Relaxed MPS

Our relaxed maximal Poisson-disk sampling algorithm is a variant
of traditional dart throwing, throwing point darts and keeping those
that hit an uncovered region (void). Algorithm 1 specifies our im-
plementation in detail; in brief, we cast a line dart into the domain
and intersect it with the disks of previously accepted samples to
generate a set of uncovered segments, then uniformly sample from
those segments with a point dart. The user specifies an acceptable
void volume V , the fraction of the domain uncovered by sample
disks. We have a conservative stopping criteria based on the number
of successive misses that usually achieves a smaller void volume.
Figure 5 can be used as a guide for selecting V in four dimensions.

ALGORITHM 1: A classical dart throwing algorithm using line
darts.

while maximality estimates are inadequate do
generate a line dart s1

for all i = permutation(1..d) do
generate line segments g = s1

i ∩ domain
for all samples p do

subdivide g = g \ D(p)
end for
if g #= ∅ then

count s1 as a hit
select a sample point uniformly from g

skip to next line dart
end if

end for
count s1 as a miss

end while

4.1.1 Complexity. The memory requirements are only O(nd),
which is what is required to represent the output point set because
each sample has d coordinates. Only 2n + d floats are needed for
scratch space for line segments g. We may generate and store only
one flat of one dart at a time. The runtime is O(dn log n + nd2) per
dart throw. The most significant feature is that the complexity does
not suffer from a curse of dimensionality: there are no exponents
containing d . The number of throws is a function of V and the miss
rate; we are not aware of any statistical techniques or theorems that
would allow us analytically bound the miss rate, but we show that
for line darts it can be made reasonable, or at least more reasonable
than the alternatives.

Our approach is efficient because a line dart is more likely to
intersect an uncovered region than a point dart. Only extremely
simple and one-dimensional data structures are needed. The cost of
throwing a line dart is nearly the same as a point dart.

4.1.2 Output and Process. The main drawback is that the out-
put is not maximal, but its deviation can be estimated. A second
potential drawback is that the process is not identical to MPS.
There is no proof that the expected outputs are the same. Indeed, for
a nonmaximal sample, the probability of inserting the next sample
point in a given disk-free subregion depends only on the subre-
gion’s area in MPS; but for our variant the probability depends also

ACM Transactions on Graphics, Vol. 33, No. 1, Article 3, Publication date: January 2014.

... probably obvious to UQ14 audience	

f=1	

f=0	

height fDfixed	

Dfree	

Dfixed	

uestimate =
WeightedVolume(flat)∑

Volume(flat)∑
=

Length(Line inside grey)∑
Length(Line)∑

Variance? Efficiency?

• We have no formal proof for the variance
•  Test problem:

–  estimating the volume of an ellipsoid
–  known analytic volume.

• Results: variance is well behaved
–  dropping as 1/number_of_samples^2
–  dropping by k

102 103 104 105 106

10-3

10-2

10-1

100

101

s=
9
p
10 , r = 10 k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

102 103 104 105 106

Number of Flats

10-3

10-2

10-1

100

101

s=1
2
, r = 20 k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

Mean error reduction by 1 / # samples^2
Vary 10-d domain aspect ratio, orientation; k-dart-dimension.

lower error for higher-k darts
coin-like	
 needle-like	

randomly oriented object	
axis-aligned object	

102 103 104 105 106

10-3

10-2

10-1

100

101

M
e
a
n

 E
rr

o
r

s= 1
10

, r = 10

102 103 104 105 106

10-3

10-2

10-1

100

101

s=1, r = 10

102 103 104 105 106

Number of Flats

10-3

10-2

10-1

100

101

M
e
a
n

 E
rr

o
r

s=1
2
, r = 0

102 103 104 105 106

Number of Flats

10-3

10-2

10-1

100

101

s=1
2
, r = 5

k	

k	

object orientation unaligned with axes helps a little, but not much	

	

error needle ≈ coin > ball with bigger volume, small efffect	

slope 1/2	

0.96 1.00 1.040.0

0.2

0.4

0.6

0.8

1.0

F
re

q
u

e
n

cy

s= 1
10

, r=10

Estimate/true volume histograms for 1 million darts
Vary 10-d domain aspect ratio, orientation; k-dart-dimension

normal-like, sharper peaks for higher-k darts

coin-like	
 needle-like	

k	

0.96 1.00 1.040.0

0.2

0.4

0.6

0.8

1.0 s=1, r=10

0.96 1.00 1.040.0

0.2

0.4

0.6

0.8

1.0 s=
9
p
10 , r=10 k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

randomly oriented object	
axis-aligned object	

0.96 1.00 1.04

Relative Estimated Volume
0.0

0.2

0.4

0.6

0.8

1.0

F
re

q
u

e
n

cy

s=1
2
, r=0

0.96 1.00 1.04

Relative Estimated Volume
0.0

0.2

0.4

0.6

0.8

1.0 s=1
2
, r=5

0.96 1.00 1.04

Relative Estimated Volume
0.0

0.2

0.4

0.6

0.8

1.0 s=1
2
, r=20 k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

object orientation, doesn’t matter very much	

	

Squish matters a little bit, but volume matters much more.���
We did 1-axis short, 1-axis long. Squish farther?	

Trends by k

Conclusion
• Higher k darts = less error, less variance

– Because each dart gives more information
• Use a higher k if

– You can compute its intersection with the object
– And that computation is not too much slower

Sample-Orientation Effects?
Axis-aligned flats just as accurate as

randomly oriented darts...
...and faster and simpler.

Axis-aligned best.
Mean error by #samples

Histogram of estimate, 1 million samples

black=point samples	

	

	

	

red=axis-aligned, 	

 one per direction	

	

	

	

	

blue=random orientation, 	

 independent	

	

	

	

green=random orientation, 	

 one per orthogonal	

102 103 104 105 106

10-3

10-2

10-1

M
e
a
n

 E
rr

o
r

s= 1
10

, r = 10

102 103 104 105 106

10-3

10-2

10-1

s=1, r = 10

102 103 104 105 106

10-3

10-2

10-1

s=10, r = 10

k=0

k=1a

k=1r

k=1o

102 103 104 105 106

10-3

10-2

10-1

M
e
a
n

 E
rr

o
r

s=1
2
, r = 0

102 103 104 105 106

10-3

10-2

10-1
s=1

2
, r = 5

102 103 104 105 106

10-3

10-2

10-1
s=1

2
, r = 20

k=0

k=1a

k=1r

k=1o

0.99 1.00 1.010.0

0.2

0.4

0.6

0.8

1.0

F
re

q
u

e
n

cy

s= 1
10

, r=10

0.99 1.00 1.010.0

0.2

0.4

0.6

0.8

1.0 s=1, r=10

0.99 1.00 1.010.0

0.2

0.4

0.6

0.8

1.0 s=10, r=10

k=0

k=1a

k=1r

k=1o

0.99 1.00 1.010.0

0.2

0.4

0.6

0.8

1.0

F
re

q
u

e
n

cy

s=1
2
, r=0

0.99 1.00 1.010.0

0.2

0.4

0.6

0.8

1.0 s=1
2
, r=5

0.99 1.00 1.010.0

0.2

0.4

0.6

0.8

1.0 s=1
2
, r=20

k=0

k=1a

k=1r

k=1o

coin-
like	

needle-
like	

randomly���
oriented object	

axis-aligned
object	

Dart orientation effects

Conclusion
•  (d choose k) orthogonal flats

deterministically ≈ randomly
–  perhaps because we used so many samples.
–  random simpler?

•  axis-aligned provides
–  good quality answers
–  simple, fast, through parameter substitution

Use random-axis orientations, of independent flats

1st 	

2nd 	

p=1/2	

p=1/2	

≈	

deterministic	
 random	

Application 1 of 3
 Volume Estimation

 LHS patterns
 More interesting functions

Volume Estimation Speedup
3-d ball, simple analytic

!"#$%

!"#&%

!"#'%

!"#(%

!"#!%
!"#'% !"#(% !"#!% !")*% !")!% !")(% !")'%

!"
#$
%&
$!
'(
)*

+'
$,
--
%-
$

./0$*1'$23'4%5637$

+,%-(#.%/0123%

+,%-*#.%/0123%

+,%%
-!#.%/0123%

!"#!$%
!"#!&%
!"#!!%
!"#!'%
!"#(%
!"#)%
!"#*%
!"#+%
!"#,%
!"#-%
!"#$%
!"#&%
!"#!%

!"#$% !"#&% !"#!% !".'% !".!% !".&% !".$% !".-%

!"
#$
%&
$!
'(
)*

+'
$,
--
%-
$

./0$*1'$23'4%5637$

/01%2'#3%45678%
/01%2!#3%45678%

/01%2%45678%

0-d	

1-d	

2-d	

2 • Ebeida, Patney, Mitchell, Dalbey, Davidson, and Owens

!"#$%

!"#&%

!"#'%

!"#(%

!"#!%
!"#'% !"#(% !"#!% !")*% !")!% !")(% !")'%

!"
#$
%&
$!
'(
)*

+'
$,
--
%-
$

./0$*1'$23'4%5637$

+,%-(#.%/0123%

+,%-*#.%/0123%

+,%%
-!#.%/0123%

(a) Monte Carlo Sampling (MC)

!"#!$%
!"#!&%
!"#!!%
!"#!'%
!"#(%
!"#)%
!"#*%
!"#+%
!"#,%
!"#-%
!"#$%
!"#&%
!"#!%

!"#$% !"#&% !"#!% !".'% !".!% !".&% !".$% !".-%

!"
#$
%&
$!
'(
)*

+'
$,
--
%-
$

./0$*1'$23'4%5637$

/01%2'#3%45678%
/01%2!#3%45678%

/01%2%45678%

(b) Latin Hypercube Sampling (LHS)

Fig. 2. Estimating the volume of a ball using random sampling via
k-d flats, k = 0, 1, 2. For each sample size, we performed 100 experiments
and calculated the RMS error. The reported CPU time is the total time con-
sumed by these experiments. For MC sampling (a) plane samples consumed
an order of magnitude less time to achieve the same error as point samples.
The savings were even more for LHS (b).

the true value. An important case of flats are one-dimensional lines.
Using our previous example, we may find the points along the line
where the function value is zero, then partition the line into seg-
ments where the function value f is strictly positive or negative,
and finally estimate the volume where f < 0 from the negative-
interval lengths. While these samples are more expensive to com-
pute, they are more powerful; depending on the function they can
generate better results for the same amount of effort.

A simple example that demonstrates this concept is estimating
the volume of a unit ball by sampling from its bounding box:
f = �1 inside the ball and 0 outside it, and we seek an esti-
mate of

R
f<0 1. Figure 2 shows error vs. time as the sample size

increases. We sampled using k-d flats of dimension k = 0, 1, 2.
For a point sample, we checked if the point was inside the ball. For
higher dimensions, we calculated the fraction of the flat inside the
ball; see Figure 3. We performed both Monte Carlo (MC) and Latin
Hypercube Sampling (LHS). For each sample size we ran 100 ex-
periments and calculated the error in the volume estimate. Plane
samples consumed less CPU time than point samples for the same
RMS error. For MC sampling the payoff was about a factor of 5,

(a) 0-d flats (b) 1-d flat (c) 2-d flat

Fig. 3. k-d flats used to estimate the volume of a ball. The fraction of the
sub-flats inside the ball estimates the function average.

1.0

V

1.0

V1/d

(a) Thin object

1.0

V

1.0

V1/d

(b) Cubic object

Fig. 4. Extreme subregion shapes. In general, a k-d flat has a better chance
to intersect a region of interest as k increases. For a given region volume,
the advantage is higher for stretched regions than for square ones.

and for LHS sampling the payoff was 3 to 8 orders of magnitude!
The reasons behind these gains are the following:

—Evaluating f along k-d flats is cheap; in this case we exploited
the analytic function of the ball.

—A k-d flat gives more information as k increases.
—A flat is cheap to generate. Each k-d flat requires d � k random

numbers; here d = 3.
—(d� 1)-dimensional flats distributed in LHS fashion boosted the

convergence rate from O

✓
1p
n

◆
to O

✓
1

n

◆
.

In general, evaluating the integration function along a k-d flat
costs more than at a single point. However, for many problems,
this extra cost is offset by the superior capability of a k-d flat to
capture narrow regions. For instance, consider Figure 4(a), where a
line flat perpendicular to that narrow region of interest will capture
it regardless of its thickness. On the other hand, the probability of
a point sample landing in the region approaches zero as the thick-
ness decreases. Suppose the region f < 0 is thin in k directions
and fat in the others, and we use k-dimensional flats. Because the
flats deterministically cycle through all coordinate directions, some
fraction of them will be roughly orthogonal to the subregion’s fat
directions even if these fat directions are not axis aligned. These
flats are likely to intersect the subregion.

The purpose of this paper is to formalize and demonstrate the
k-d dart approach. In Section 4, we show three practical applica-
tions: completing a relaxed maximal Poisson-disk sampling, in di-
mensions 4–30; rendering depth-of-field blur in four dimensions;
and estimating the probability of failure from a response surface for
uncertainty quantification, where the probability is small, e.g. 1e-5,
and the dimension is large, e.g. 15. In each of these three applica-
tions the space is of moderate dimension, and line darts are particu-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Algorithm: average lengths of lines (area of planes) inside sphere.	

Why did this work so well?	

Volume Estimation Speedup
Circular Parabola

10
−9

10
−8

10
−7

10
−6

10
−5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2d, 1E−5

2d, 1E−7

6d, 1E−5

6d, 1E−7

15d, 1E−7

ru
n
 t
im

e
 r

a
ti
o

RMS error

Circ Parab Point/Line Run Time Ratio

i.e. 2d domain	

 1E-5 analytic value	

 s
pe

ed
up
	

Volume Estimation Speedup
Planar Cross

3:12 • M. S. Ebeida et al.

Fig. 14. Shape of the failure regions in 2-d.

Fig. 15. Speedup of line darts over point sampling for estimating the Prob-
ability Of Failure (POF) of the circular parabola (left) and planar cross
(right) analytic test functions. Each trend line indicates the Root-Mean-
Square (RMS) error of the estimated POF over 64 trials, for a test function
in a given dimension (labeled #d) with known analytic POF yt (labeled
1E-#). Test functions with the same dimension and POF are colored the
same in the left and right. Note that the speedups are greater than 1 for these
problems, indicating that line darts are faster than point sampling. Since
line darts in essence reduce the dimensionality of the problem by one, as
the dimension increases the speedup decreases; maintaining speedup may
require higher-dimensional darts.

y(x) =
[

d∏

i=1

1 + cos(2πxi)
2

]1/d

, 0 < xi < 1. (5)

Failure is defined as the function value below some constant
threshold: y(x) < yt . The shape of the failure region is different for
the two test functions: a d-dimensional ball for the parabola and a
fattened plus-sign for the planar cross; see Figure 14. For uniform
distributions, the probability of failure is the fraction of the domain
volume where y(x) < yt . We choose yt so the probability of failure
is exactly 10−5 or 10−7. We tested dimensions 2, 6, and 15. We
estimate the failure volume using line darts. For a line flat, we find
the roots of the single-variable equation y(xi) = yt . The length of
the line segment between the two roots (if real roots exist) is used
to estimate the volume of the failure region. Figure 15 demonstrates
the benefit of line darts over conventional point sampling in reducing
the time required to achieve a given accuracy level. Root-finding for
line darts is expensive, but the information is worth it: for all tests
line darts were more efficient than point darts. Our root-finding
implementation is more expensive for the planar cross than the
circular parabola, so the speedups for line darts on the planar cross
are less even though the failure region is longer and thinner.

Table II. k-d Dart Parameter Study
d k s r n

2 0–1 1
10 , 1

2 , 1, 2, 10 10 102–106

2 0–1 0.5 0, 1, 5, 10, 20 102–106

3 0–2 1
10 , 1

2 , 1,
√

2,
√

10 10 102–106

3 0–2 0.5 0, 1, 5, 10, 20 102–106

10 0–9 1
10 , 1

2 , 1,
9√2,

9√10 10 102–106

10 0–9 0.5 0, 1, 5, 10, 20 102–106

The darts are axis aligned except for some d = 2 experiments. We repeat
each parameter combination 1000 times, N = 1000. Squish parameters s are
symmetric around 1 with respect to ellipse volume: for example, for d = 2,
s = 1/2 and s = 2 define ellipses with the same volume.

5. ACCURACY EXPERIMENTS

5.1 Problem Motivation

We provide some experimental results on the accuracy of darts for
the canonical Monte Carlo problem of estimating the volume of
an object in high dimensions. (Volume estimation is in the same
category as the probability-of-failure problem in Section 4.3.) In
particular, we seek to show that the method produces good estimates,
regardless of the size, shape, dimension, and orientation of the
object, and regardless of the dimension and orientation of the darts.
The average estimate should be close to the true estimate, and the
higher moments of the estimates should be low. We design our
experiments to show the effects (if any) of the following factors:

—d , the dimension of the object;
—k, the dimension of the dart. Of particular interest is comparing

our results to standard MC point sampling, k = 0;
—s, the squish factor of the object, which controls its aspect ratio;
—r , the number of rotations of the object. This allows us to compare

axis-aligned objects to unaligned ones;
—axis-aligned darts versus unaligned darts.

We perform N experiments of n flats over the prior parameters, as
described in Table II. Note that we keep the number of flats constant,
rather than the number of darts, because the computational expense
is more closely tied to the number of flats for objects with an analytic
expression, and because middle-dimensional darts have many more
flats than high- and low-dimensional ones.

5.2 Object Generation

Instead of a spherical object, we estimate the volume of an el-
lipse (a.k.a. ellipsoid), randomly oriented and squished. An ellipse
provides enough generality to test the factors in Section 5.1, but
enough simplicity to isolate numerical from methodology issues. In
particular, we choose an ellipse because it is possible to analytically
calculate the volume of an ellipse’s intersection with a k-d dart.

Our object is a d-dimensional ellipse centered at the origin. We
construct it as follows. We start with a d-ball centered at the origin
with radius 1. This fits in an origin-centered cube with side length 2,
the two-cube. We ensure the final ellipse also lies in the two-cube.

—s: squish factor. We scale the ellipse along the x-axis by multi-
plying its x-extent by s. The ball has s = 1. Note s < 1 gives
thin, coin-shaped objects. For s > 1, we then shrink the ellipse
so it fits in the two-cube: multiply all coordinates by a factor of
1/s. The net effect is keeping the x-coordinate fixed and scaling
the other axes by 1/s. This gives needle-shaped objects.

—r: number of rotations. The more rotations we perform, the less
the object is aligned with the coordinate axes. We perform r

ACM Transactions on Graphics, Vol. 33, No. 1, Article 3, Publication date: January 2014.

Estimate volume of y(x) < 0	

10
−9

10
−8

10
−7

10
−6

10
−5

10
0

10
1

10
2

10
3

2d, 1E−5

2d, 1E−7

6d, 1E−5

6d, 1E−7

15d, 1E−7

ru
n

 t
im

e
 r

a
ti
o

RMS error

Planar Cross Point/Line Run Time Ratio

i.e. 2d domain	

 1E-5 analytic value	

Application 2 of 3
 Well-spaced points

 Use line sampling to generate a point sampling,
 of a type popular in Graphics texture mapping

Maximal Poisson-Disk Sampling
• Defined as the limit distribution of a statistical

“dart-throwing” process
– Random disks arive with Poisson-distributed arrival

times, equivalent to random arrival order:

Ω
x4?	

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

k-d Dart based
Relaxed Poisson-Disk Sampling

• Dart-based
–  search space using lines, planes, ...

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

• Relaxed
–  stop after many successive dart fails
–  expected uncovered volume is small

Spectral Quality Evaluation of Point Sets

•  Maximal
Poisson
Disks

•  White noise

•  Maximal
Correlated
Disks

MPS vs. line-dart vs. point-dart
Can you tell them apart?

distance non-uniformity	
 angular non-uniformity	

lin
e

da
rts
	

po
in

t d
ar

ts	

tru

e
M

PS
	

k-d Dart Relaxed MPS Properties

!"#$

!%&$
'()$

*()
$

!"#$

!%&$

*(
)$

'()
$

+,-$

+,+$

+,.$

+,/$

+,0$

+,1$

+,2$

+,3$

+,4$

+5'2$ +5'1$ +5'0$ +5'/$ +5'.$

!"
#$
%"&

'(
)*

+,
#-
./
$+0

1(
)+

,//.-$1&2.+0.31"*"*4+5)"6++758+

67
%&8
($

9%&:
($
";:$

";:$

9"*.+:#;+<)"*$+!1%$#+
=1>"312"$?+

%@AB;C+

better quality���
line darts produce fewer large gaps	

than point darts	

3:8 • M. S. Ebeida et al.

Fig. 7. Time (blues) and memory (reds) for line darts compared to Simple
MPS for the same acceptable void volume, V = 1e-2, in d = 4.

Fig. 8. V threshold effects on time (blues) and sample size (greens) for
line and point darts in d = 4. Data points are labeled with log10 V . As V

decreases, the sample approaches maximality and distribution aspect ratio 1.
Simple MPS [Ebeida et al. 2012] dashed lines are for a maximal distribution.

resulting in a smaller rc than the worst case where the void is a
single hypercube.

4.1.4 Experimental Results.

4.1.4.1 Distribution Aspect Ratio. The free radius, rf , is
the disk radius, the minimum distance between any two samples.
The coverage radius, rc, is the maximum distance between a domain
point and its nearest sample. We define the distribution aspect ratio
as β = rc/rf ≥ 1. This is a measure of maximality.

To compute this for a point set, we used Qhull [Barber et al. 1996]
to generate a Voronoi diagram. For each Voronoi vertex interior to
the domain we retrieved the distance to its closest sample point: rc

is the maximum of these distances.
Figure 5 shows the relation between the distribution aspect ratio

and the acceptable void volume in d = 4 for various disk-free radii.
Figure 7 shows time and memory across different radii for a fixed
void volume. Figure 8 shows runtimes as the point sets approach
maximality. Line darts consistently produced better results than
point sampling.

4.1.4.2 Speed of Approaching Maximality. We tested our
code over 2-, 4-, 10-, and 30-dimensional domains using point
darts and line darts. Figure 9 shows the number of points inserted
over time. The expected void volume V is related to the number of
points; in practice the number of inserted points is a better indicator
of maximality than our loose estimates of V based on successive

Fig. 9. Line darts approach maximality faster than point darts, as measured
by the number of inserted points in a given runtime.

misses. Line darts were able to generate larger samples for all V
and d .

4.1.4.3 Efficiency by Method. Figure 7 compares the per-
formance of traditional point darts and line darts (this work) to
Simple MPS [Ebeida et al. 2012]. Recall Simple MPS is based on a
flat quadtree, and is currently the fastest and most memory efficient
of the provably correct MPS methods. Our method is attractive at
large values of rf for its speed, and at low values of rf for its mem-
ory consumption. For example, for rf < 0.025, we generated 4M
points in half an hour using 107 MB of memory, while Simple MPS
ran out of memory at 2 GB.

4.1.4.4 Output Quality. We measure the quality of the dis-
tribution of 2-d output points using the PSA spectrum analysis
tool [Schlömer 2011]. Using point darts, our process is the same as
classic dart throwing, so we use it as our standard of correct output.
Figures 6 and 10 compare the outputs’ blue-noise properties; the
difference between point and line darts was insignificant, at least
for these three metrics.

4.2 Depth-of-Field with Antialiasing

k-d darts can be used for fast and high-quality rendering of Depth-
Of-Field (DOF) effects in computer-synthesized images. Mathemat-
ically, computing a pixel’s color in the presence of DOF can be ex-
pressed as a four-dimensional integral over the pixel’s spatial (x, y)
and lens aperture (u, v) dimensions. In most high-quality render-
ers, this is calculated using Monte Carlo integration over many point
samples. This method suffers from a low rate of convergence; reduc-
ing noise for a good-quality image usually requires a very large num-
ber of samples per pixel. k-d darts offer the promise of faster conver-
gence with low noise. Instead of using point samples for reconstruc-
tion, we use 1-d (line) darts, thrown in the 4-d (x, y, u, v) space.

We use Latin Hypercube Sampling (LHS) or jittered sampling
for each dimension [Cook 1986]. Given that our sample space is
four-dimensional, each line dart consists of four line flats. We select
n points, that is, 4n flats. Each line requires a fixed location in 3-d
and a variable fourth dimension.

We compute coverage for these darts using a method inspired by
Gribel et al.’s work [2010, 2011] on rendering motion blur. Gribel

ACM Transactions on Graphics, Vol. 33, No. 1, Article 3, Publication date: January 2014.

line darts add disks faster	

than point darts	

!"#

!$#
!%#

!&#

!'#

!$#

!%#

!&#

!'# !"#
!$#

!%#
!&#

!'#

!$#
!%#

!&#

!'#

(#

"(#

%(#

'(#

)(#

*((#

*"(#

*%(#

*'(#

*+,(#

+,#

*+,"#

*+,$#

*+,%#

*+,&#

*-(# *-*# *-"# *-$# *-%# *-&#

!"
#
$%
&'
!(
)&
'*+

'$
,(
-.
/0
'

1(
#
&'
*/
&2
,-

3/
0'

4(/.5(678,-'9/$&2.':"8,'''

!(#$%&';<!'
'=>?+'$,(-./''

!(#$%&';<!''
'=@@'/&2,-3/'

A(-&'3"5./'

<,(-.'3"5./'

<,(-.'3"5./'A(-&'3"5./'

line darts are faster or slower than MPS in d=4,	

 depending on relaxed maximality 	

Simple MPS requires 2d memory, intractable in d>6	

 but line-darts are linear memory	

Application 3 of 3
 Graphics, depth of field blur
 Integration

Graphics Application
Depth of Field Sampling

Pixar’s Toy Story 3	

Depth-of-Field blur
requires many point samples
per pixel !

movie frame rendering is overnight,
not realtime,
as many simulation and UQ studies

blurred
far from lens
focal plane

Line-sampling for
Depth of Field Blur

•  Solution: point sampling
 For every (a,b) pixel

4-d: (u,v) lens plane, (x,y) scene space
z scene space is dependent

u

de
pt
h

!"#$%&%'%(%)"#$

!"*$%&%'%(%)"*$

+*,-%./%01-%2/

x

u

•  Solution: our algorithm
lines sample and compute
occlusion depth (decision)
color contribution (integration)

(x,y,z) scene
(u,v) lens (a,b) pixel

axis-aligned sample
lines in (u,v,x,y)
e.g. pick x, y, v, let u vary
e.g. pick y, u, v, let x vary

Blur, line-darts vs. point samples

64 points	
4 points	
 256 points	

16 lines	
 30 lines	
4 lines	

3:10 • M. S. Ebeida et al.

Fig. 11. Our technique for computing analytical coverage using line darts.
In this example, consider two possible line flats in the x and u directions.
The domain can be transformed and we can test the triangles for occlusion
along the line flat as shown in (a). Depth resolution per flat is shown in (b).

concept can be extended to our other hypercube setups, fixing three
of the dimensions and varying the last.

4.2.3 Analytical Coverage in the Hypercube Domain. Know-
ing the edge equations in our 4-d domain, we can now compute their
coverage along a line sample. Figure 11 summarizes our technique
for determining coverage.

We instantiate a set of line flats along each of our four hypercube
configurations. A line dart is the combination of four different line
flats (one in the direction of each of the four dimensions of the
domain) with initial points chosen using our LHS.

Rendering consists of testing each incoming triangle against po-
tentially covered line flats. For each pixel sample in the triangle’s
bounding box, we use equations from Section 4.2.2 to transform
triangle edges to test for the correct hypercube domain.

To finish the calculation we follow Gribel et al.’s approach [2010]
to construct and resolve line darts.

For each line flat, we analytically compute its segment covered
by the triangle. A per-line-sample queue stores the color and depth
of covered segments. Once all triangles have been processed, we
resolve the final color for each sample. We sweep across the flat
while aggregating triangles closest in depth, and then use all pixel
samples to compute the final color for the pixel.

4.2.4 Implementation and Results. To test our formulation, we
built a simple CPU-based renderer. It is capable of rendering scenes
using traditional triangle rasterization. We integrated two additional
capabilities:

—a stochastic sampler based on point darts;
—a sampler based on line darts.

The two noise artifacts that typically occur using a DOF scheme are
noise in blurry regions and noisy aliasing artifacts near the point in
focus. For scenes far away from the focal plane, line flats in the x
and y direction become particularly narrow when compared to the
sampling space, and this causes additional noise. In these regions
the length of flats in the x and y dimensions are significantly smaller
than flats in either the u or v direction.

If we consider all such flats to have equal contributions, this re-
sults in the x and y samples adding a noticeable amount of noise
into our system in blurry regions. To address this, rather than con-
sidering all line flats to have equal contribution, we select a weight
constant (α = 0.2 in our case) such that x and y line flats are scaled
by α and contribute less to the scene.

This weight can be modified based on the aperture of the lens
for the scene. In cases where the aperture is small, contributions

Table I. Performance of Our Point vs. Line Darts
Rendering Time (s)

Sample Type Sample Count Cessna Teapot

Points
64 29.6 52.1
256 116.7 198.6

1024 453.0 792.1

Line Darts
4 14.9 24.5

16 56.8 91.9
30 105.1 169.4

Fig. 12. Plots of the test functions in 2-d.

from x and y are deemed more important (for antialiasing), and
the weight is adjusted accordingly. A more accurate dart sampling
method might also consider the ratios of flat lengths per tile (worst
case) and decide on an α weight accordingly. Research is needed to
determine the optimal amount for each flat to contribute. Still, our
simple heuristic seems effective.

Figure 13 compares two scenes rendered with our point dart and
line dart techniques. Renderings based on k-d darts are virtually
free of noise and aliasing artifacts. Point darts, however, retain
noticeable aliasing artifacts even with 1024 darts. Although 16 line
darts produce a bit more noise in unfocused regions than 256 point
darts, 30 line darts has better quality than 256 point darts and around
the same quality as 1024 point darts in unfocused regions, and no
noticeable aliasing artifacts in focused areas.

Table I shows the performance of our samplers. Clearly, throwing
one line dart is more expensive than throwing one point dart. How-
ever, fewer are needed, and correctly weighted line darts converge
more quickly to a less noisy image without aliasing artifacts.

4.3 Probability of Failure

Uncertainty quantification usually explores a vast high-dimensional
space with a limited budget of sample points. Efficiency is crucial
because typically the function evaluation is expensive and we want
more sample points than we can afford. Sometimes we can afford
more data by evaluating a cheaper surrogate model instead. But,
if the failure region is small enough, then even that is not enough
for Monte Carlo (MC) sampling to accurately estimate the prob-
ability of failure. Here we show that k-d darts can improve MC
efficiency.

We test the “circular parabola” (Eq. (4)) and “planar cross”
(Eq. (5)) surrogate models; see Figure 12.

y(x) =
d∑

i=1

(2xi − 1)2, 0 < xi < 1. (4)

ACM Transactions on Graphics, Vol. 33, No. 1, Article 3, Publication date: January 2014.

16 lines / pixel 	

1024 points /pixel	

 8x runtime	

256 points /pixel	

 2x runtime	

Summary
•  Any point-sampling algorithm depending on function averages can be

converted to a line-sampling algorithm
–  Including indicator functions e.g. volume estimation

uestimate =
WeightedVolume(flat)∑

Volume(flat)∑
=

Length(Line inside grey)∑
Length(Line)∑

f=1	

f=0	

height���
fDfixed	

D
fix

ed
	

–  Need to evaluate function along a flat (line)
–  Efficiency depends on evaluation speed

•  This is the challenge for practical k-dimensional flats
–  Axis-aligned flats (lines)

•  efficient and random-enough
•  Application variants

–  Generate a well-spaced disk packing
•  Although line samples are not uniform by area,

effect on output distribution is unoticable.

–  Depth of Field blur
•  Intrusive line-sampling
•  Efficient function integration without artifacts

Extra stuff

Heilmeier’s Catechism

1.  What is the problem, why is it hard?
–  Uncertainty quantification, small failure regions in vast

spaces, expensive functions
2.  How is it solved today?

–  Many sampling methods based on statistics and analysis
3.  What is the new technical idea; why can we succeed now?

–  Borrowing Computational Geometry, Graphics concepts:
•  line searches
•  sample-neighborhoods, geometric balls
•  functional integration

4.  What is the impact if successful?
–  Increased convergence rates, fewer parallel simulations

a computational geometer’s view
Space for All Point Sampling Methods

Spatial���
Randomness	

Geometric
Density	

Discrete Density	

injection	

sifting 	

off-centers	

uniform-random coordinates	

MPS	

jittering	

β = rc rf Distribution Aspect Ratio; DT angles,Vor cell aspect ration number of samples

Fourier Spectrum, Power and Anisotropy

optimization	

CVT	

Lipschitz Conditions

Pairwise Distances, Edge Orientations

kissing number Unique Coverage

Dimension	
 d

Delaunay refinement	

maximal Poisson-disk sampling	

Opt-β, spatially-varying MPS	

number of neighbors, edges, cells,

bubble mesh	

joint position and sample optimization	

	

rc coverage radius, Vornoi vertex distance
rf free radius, nearest-neighbor distance; Delaunay edge lengths

Blue Noise

two-radii MPS	

Process randomness is a hidden axis,	

merely a means to obtain spatial randomness.	

Main Challenge of Solving MPS in Higher
Dimensions (Curse-Of-Dimensionality)

• Curse of dimensionality
– Natural: Kissing Number grows

exponentially with dimension

– Artificial: Grid based methods
(state of the art) to retrieve
neighbors, and track remaining
voids

• Generalization of Sampling Entities
– k-d darts: Random sampling using hyperplanes
 void capturing, integration and UQ

k-d Darts for Solving MPS

